logo image
More Topics

Reset Filters

MAURIZIO SAVINA
link
July 25, 2016
Spatial Correlation - Risk and Opportunity

According to Maurizio Savina and Adrian Mark, flood risk experts at RMS, as much as 80 percent of 1-in-200 year European flood losses that impact the (re)insurance industry result from Pan-European events. Understanding the “spatial correlation” of countries more prone to simultaneous flooding is, therefore, essential in managing accumulations and identifying opportunities to diversify the risk in a portfolio. In June 2016, the severe floods that affected several European countries are expected to generate claims of up to $1.6 billion for the French market and around $1.4 billion for Germany. This follows Germany’s record year for flood losses in 2013, and a year when total economic losses for flood reached $16.5 billion across central and eastern Europe, of which $4.1 billion was insured. Those flood events demonstrate how multiple river systems can be affected, impacting more than one country, and lasting for several days or even weeks depending on regional meteo-hydrological conditions. The underlying driver of such broad flooding is often just a single weather system that produces heavy precipitation over multiple countries. “SOME NEIGHBORING COUNTRIES SHARING COMMON RIVER BASINS ARE MORE LIKELY TO BE IMPACTED AT THE SAME TIME BY A MAJOR FLOOD.” In fact, a quarter of major European flood events impact more than one country. And floods simultaneously affecting at least three European countries account for more than 90 percent of tail risk across Europe. These facts underscore the importance of understanding the correlation and diversification of risk across both basins and countries in order to accurately estimate portfolio accumulations and capital requirements. Figure 1. Spatial correlation of flood risk between London and other locations in Europe. (Source: RMS Europe Flood HD Models.) To further emphasize the point, RMS estimates that approximately 20 percent of the 1-in-200 year losses arising from portfolios in Germany and the Czech Republic are from events that impact both countries at the same time. This is a statistically significant level of spatial correlation, and a consideration for (re)insurers when managing their international portfolios. Compared to Germany and the Czech Republic, for other territories spatial correlation can be significantly lower, offering (re)insurers opportunities to diversify their flood risk. Figure 1 shows the spatial correlation of flood risk between London and all other parts of Europe. The red territories are highly correlated with London and thus more likely to be hit by common events, with yellow-to-green areas not correlated with London and southern England. By using this information a (re)insurer with a portfolio concentrated in southern England could strategically target expansion into central or eastern Europe in order to grow its portfolio while minimizing accumulations of correlated risk. Closing the Protection Gap The gap between economic losses and insured loss for flood events is a global issue. Each new major flood event further stresses the need for greater insurance penetration around the world. Europe is not immune from the issue. In markets where flood insurance is not bundled into standard insurance policies, such as in Germany, adoption of flood cover is relatively low in comparison to markets like France, Spain and the U.K. While uptake increased marginally in the aftermath of the 2013 floods, there remains a significant opportunity to close the protection gap and improve the country’s flood resilience – with models playing a key role. “A BIGGER GAP BETWEEN ECONOMIC AND INSURED LOSSES FROM THE JUNE 2016 FLOODS IS EXPECTED IN GERMANY THAN IN FRANCE DUE TO LOWER LEVELS OF FLOOD INSURANCE PENETRATION.” The success of “nat cat” schemes in these markets is one mechanism with which the industry can assist governments to close the protection gap. The U.K.’s Flood Re initiative is one example of a public-private approach whose aim is to ensure residential properties at a high risk of flood have access to affordable insurance, while lobbying for increased physical resilience through continued investment in flood defenses and mitigation measures. Catastrophe modeling is essential to the future success of such schemes and to increasing Europe’s flood resilience more generally. Risk transfer and risk mitigation require high-precision modeling across Europe to better understand the impact of Pan-European flooding. But these tools can also be used to understand the importance of investment in flood defenses and inform planning guidelines in flood-prone areas. Managing Flood Accumulations RMS Europe Inland Flood High Definition (HD) Models were developed to help the insurance industry and policymakers better evaluate the potential impact of Europe’s flood events through an improved understanding of risk accumulations, ensuring a major event does not have a disproportionate impact on a (re)insurer’s portfolio.  These models simulate hydrology continuously in space and time to reproduce both temporal and spatial correlation of flood risk and offer the largest single Europe-wide event set available on the market, covering 18 river basins and 8,289 catchments over 13 countries.  Maurizio Savina is a senior product manager for the RMS Europe flood models.  Adrian Mark is senior product manager for RMS flood maps and data.

JEFF WATERS
link
July 25, 2016
U.S. Coastal Flood - Rising Up the Agenda

At a time when the U.S. property catastrophe sector is experiencing heightened competition, flood insurance offers untapped potential that can benefit (re)insurers, the government and emergency management organizations, explains RMS flood risk expert Jeff Waters.  Opportunities begin at the coast, where storm surge-driven coastal flooding stimulates the majority of the flood risk profile. Using a variety of newly available flood tools, probabilistic models and location-level analytics, private carriers can quantify coastal flood risk accurately, allowing them to determine the size and extent of opportunities and where to capitalize on them. Coastal flood is a unique peril due to its complex hydrodynamic characteristics and highly granular gradients. The magnitude and severity of U.S. coastal flood risk is dependent on a number of factors, including the shape of the coastline, local bathymetric and topographic profiles, slope and elevation. From a (re)insurer’s perspective, it’s also highly dependent on building characteristics, such as first-floor elevation or presence of flood defenses, as well as flood coverage conditions and exclusions. In the U.S., the majority of the coastal flood risk profile is driven by storm surge from tropical cyclone events. Consequently, the most susceptible areas are located along the Gulf Coast and Eastern Seaboard, where exposures are high and distance to the coast is low. According to RMS research, there is more than $11 trillion in exposure in coastal ZIP codes from Texas to Maine, especially in the last 10-15 years. In 2005, Hurricane Katrina caused $15 billion in economic storm surge losses in Orleans Parish alone, which includes the city of New Orleans. It was the first time in decades that over 50 percent of losses from a hurricane were driven by storm surge. Levee and flood wall failures caused flooding across 80 percent of New Orleans, devastating much of the city and costing the insurance industry $41 billion (at 2005 prices) in catastrophe claims. “ACCORDING TO RMS RESEARCH THERE IS MORE THAN $11 TRILLION IN EXPOSURE IN COASTAL ZIP CODES FROM TEXAS TO MAINE.” Storm surge was once again a major driver of loss during Superstorm Sandy in 2012. The pulse of seawater pushed ashore by the storm’s hurricane-force winds flooded streets, tunnels and subway lines in New York City and surrounding areas, causing insured losses of nearly $19 billion, 60 percent of which was attributed to coastal flooding. Surge risk is only going to increase in the future. Risk and corresponding losses from hurricane-induced storm surge are expected to grow as a result of sea-level rise and increasing coastal exposures. In 2014, RMS partnered with the Risky Business Initiative to quantify and publicize the economic risks of climate change in the U.S. Among other findings, the study determined that by mid-century, storm surge has the potential to generate more than half of economic losses from landfalling hurricanes in the U.S. The U.S. Flood Opportunity – It Starts on the Coast The movement towards privatizing the U.S. flood insurance market reflects concern surrounding the flood “protection gap” and the unsustainability of the National Flood Insurance Program (NFIP), which has amassed more than $23 billion in debt by offering coverage at rates that do not reflect the true underlying risk. This is especially true in highly exposed coastal zones, where it is estimated that as much as 20 percent of NFIP flood insurance rates are subsidized. Unlocking the potential for flood privatization nationwide will depend on a number of factors, from federal and state-level legislative reform to the implementation of more actuarially sound rates. It may take years before the private flood market is mature, but the foundation is taking shape and opportunities are materializing. Figure 1. Current and projected 100-year return period economic storm surge losses. (Source: RMS) In the meantime, it is important to recognize where private carriers can begin to assess and capitalize on these opportunities today – the hurricane coast. Here, where many FEMA high-risk flood zones (A and V) are located, NFIP participation ranges from 10 percent to 70 percent, according to RMS. It is also an area for which model vendors have developed a number of advanced flood analytics, from probabilistic models to hazard data, both of which provide a more comprehensive view of the coastal flood risk landscape and enable private carriers to quantify coastal flood risk more accurately. Probabilistic storm surge models are widely available in the market today. Often integrated with a broader hurricane or wind model solution, they provide frequency, severity and uncertainty metrics for a spectrum of potential coastal flood events, helping to inform more accurate portfolio management, reinsurance pricing and risk transfer decisions. Flood hazard metrics, on the other hand, are newer to the market. They provide varying views of flood extent and severity throughout the U.S., depending on the provider. In many cases they represent hazard on a more granular basis than is currently possible using FEMA maps, enabling carriers to differentiate risks within flood zones with more precision and accuracy, and determine where FEMA may be over- or underestimating flood hazard in a given location to, ultimately, select (or avoid) the risk vis-à-vis the NFIP. For example, the recently released RMS U.S. Flood Hazard Data provides defended and undefended views of flood hazard extent and severity for multiple return periods, reflecting all sources of both coastal and inland flooding. As the private flood insurance market continues to take shape, enhanced flood analytics can be used to gain important insights into potential flood events before they occur, particularly along the coast, allowing (re)insurers to be more proactive than reactive when developing, managing and growing a profitable flood portfolio. Success will, however, depend largely on the ability of the market to quantify flood risk with sufficient granularity and to offer actuarially sound rates that allow (re)insurers to obtain a profitable return. Advice to (Re)insurers Looking to Grow a Coastal Flood Portfolio Collect high-quality, flood-relevant exposure data. Knowing precise location and elevation information, such as distance to coast and the presence of local flood defenses, is just as important as knowing the structural profile. Having important elevation information, such as the height of the lowest occupied floor or the threshold flood height, helps determine the approximate water level needed to cause damage to the property. Understand the correlation between surge and other types of coastal hazards, and how it translates to policy terms and conditions. Hurricane wind and surge impacts are often correlated; knowing where and to what extent can help you avoid overconcentration of risk.  Tropical cyclone-induced precipitation can also drive a significant amount of damages along the coast. Know the potential future impacts of large-scale climate and exposure patterns. By mid-century, storm surge is expected to generate more than half of the economic losses coming from landfalling U.S. hurricanes. With sea-level rise comes an increased likelihood for catastrophic surge events, especially in coastal cities with shallow sloping coastal profiles (Tampa, FL).   Jeff Waters is responsible for guiding the insurance market’s understanding and usage of RMS North America climate models, including the hurricane, severe convective storm and winter storm models.

Loading Icon
close button
Overlay Image
Video Title

Thank You

You’ll be contacted by an Moody's RMS specialist shortly.